High Order Finite Difference Methods in Space and Time
نویسنده
چکیده
Kress, W. 2003. High Order Finite Difference Methods in Space and Time. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 880. 28 pp. Uppsala. ISBN 91-554-5721-5 In this thesis, high order accurate discretization schemes for partial differential equations are investigated. In the first paper, the linearized two-dimensional Navier-Stokes equations are considered. A special formulation of the boundary conditions is used and estimates for the solution to the continuous problem in terms of the boundary conditions are derived using a normal mode analysis. Similar estimates are achieved for the discretized equations. For the discretization, a second order finite difference scheme on a staggered mesh is used. In Paper II, the analysis for the second order scheme is used to develop a fourth order scheme for the fully nonlinear Navier-Stokes equations. The fully nonlinear incompressible Navier-Stokes equations in two space dimensions are considered on an orthogonal curvilinear grid. Numerical tests are performed with a fourth order accurate Padé type spatial finite difference scheme and a semi-implicit BDF2 scheme in time. In Papers III-V, a class of high order accurate time-discretization schemes based on the deferred correction principle is investigated. The deferred correction principle is based on iteratively eliminating lower order terms in the local truncation error, using previously calculated solutions, in each iteration obtaining more accurate solutions. It is proven that the schemes are unconditionally stable and stability estimates are given using the energy method. Error estimates and smoothness requirements are derived. Special attention is given to the implementation of the boundary conditions for PDE. The scheme is applied to a series of numerical problems, confirming the theoretical results. In the sixth paper, a time-compact fourth order accurate time discretization for the oneand two-dimensional wave equation is considered. Unconditional stability is established and fourth order accuracy is numerically verified. The scheme is applied to a two-dimensional wave propagation problem with discontinuous coefficients.
منابع مشابه
The new implicit finite difference scheme for two-sided space-time fractional partial differential equation
Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...
متن کاملApplication of high-order spectral method for the time fractional mobile/immobile equation
In this paper, a numerical efficient method is proposed for the solution of time fractional mobile/immobile equation. The fractional derivative of equation is described in the Caputo sense. The proposed method is based on a finite difference scheme in time and Legendre spectral method in space. In this approach the time fractional derivative of mentioned equation is approximated by a scheme of ord...
متن کاملA New Implicit Finite Difference Method for Solving Time Fractional Diffusion Equation
In this paper, a time fractional diffusion equation on a finite domain is con- sidered. The time fractional diffusion equation is obtained from the standard diffusion equation by replacing the first order time derivative by a fractional derivative of order 0 < a< 1 (in the Riemann-Liovill or Caputo sence). In equation that we consider the time fractional derivative is in...
متن کاملHigh Order Compact Finite Difference Schemes for Solving Bratu-Type Equations
In the present study, high order compact finite difference methods is used to solve one-dimensional Bratu-type equations numerically. The convergence analysis of the methods is discussed and it is shown that the theoretical order of the method is consistent with its numerical rate of convergence. The maximum absolute errors in the solution at grid points are calculated and it is shown that the ...
متن کاملAn Implicit Difference-ADI Method for the Two-dimensional Space-time Fractional Diffusion Equation
Fractional order diffusion equations are generalizations of classical diffusion equations which are used to model in physics, finance, engineering, etc. In this paper we present an implicit difference approximation by using the alternating directions implicit (ADI) approach to solve the two-dimensional space-time fractional diffusion equation (2DSTFDE) on a finite domain. Consistency, unconditi...
متن کاملWater hammer simulation by explicit central finite difference methods in staggered grids
Four explicit finite difference schemes, including Lax-Friedrichs, Nessyahu-Tadmor, Lax-Wendroff and Lax-Wendroff with a nonlinear filter are applied to solve water hammer equations. The schemes solve the equations in a reservoir-pipe-valve with an instantaneous and gradual closure of the valve boundary. The computational results are compared with those of the method of characteristics (MOC), a...
متن کامل